Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems

Antony Rowstrorh and Peter Drusch&l

! Microsoft Research Ltd, St. George House,
1 Guildhall Street, Cambridge, CB2 3NH, UK.
antr @i crosoft.com
2 Rice University MS-132, 6100 Main Street,
Houston, TX 77005-1892, USA.
druschel @i ce. cs. edu
PRELIMINARY DRAFT

Abstract. This paper presents the design and evaluation of Pastnalalde,
distributed object location and routing scheme for wideaapeer-to-peer appli-
cations. Pastry performs application-level routing angtolblocation in a poten-
tially very large overlay network of nodes connected via liternet. It can be
used to support a wide range of peer-to-peer applicatikeglobal data storage,
global data sharing, and naming.

An insert operation in Pastry stores an object at a useretkfiomber of diverse
nodes within the Pastry network. A lookup operation relaigtrieves a copy of
the requested object if one exists. Moreover, a lookup iallystouted to the node
nearest the client issuing the lookup (by some measure afrpity), among the
nodes storing the requested object. Pastry is completelgniialized, scalable,
and self-configuring; it automatically adapts to the atrideparture and failure
of nodes.

Experimental results obtained with a prototype implemgoaon a simulated
network of up to 100,000 nodes confirm Pastry’s scalabilityability to self-
configure and adapt to node failures, and its good networitygroperties.

1 Introduction

Peer-to-peer Internet applications for global file shariikg Napster, Gnutella and

FreeNet [1-4] have recently gained popularity. Severatassh projects aim at con-
structing other types of peer-to-peer applications ancewstdnding more of the issues
and requirements of such applications and systems [5, 4}-tBepeer systems can be
characterized as distributed systems in which all nodee igentical capabilities and

responsibilities, and all communication is symmetric.

One of the key problems in large-scale peer-to-peer aggitais to provide ef-
ficient algorithms for application-level routing and loicatt of content within the net-
work. Currently, each peer-to-peer application uses it @pproach to this problem.
For instance, Napster locates content using a centralizelosité; Gnutella relies on

* Work done in part while visiting Microsoft Research, Candige, UK.

www.manaraa.com

broadcast to locate content; and FreeNet uses randomizegdntaouting that gains
scalability and a degree of anonymity at the expense oftiielieontent location.

This paper presents Pastry, a generic, decentralizedtpgerer content location
and routing system for very large, self-configuring ovenayworks of nodes connected
via the Internet. Pastry is completely decentralized tfeegilient, scalable, and reliably
locates a nearby copy of the requested content. Pastry chie beed as a building
block in the construction of a variety of peer-to-peer Intrapplications like global
file sharing, file storage, and naming systems.

An insertoperation in Pastry stores an object at a user-defined nuailziverse
nodes within the Pastry network.ldokupoperation reliably retrieves a copy of the re-
quested object if one exists. Usually, the object is retritlvom the live node “nearest”
the clientissuing the lookup, among the nodes storing thecoProximity is measured
here in terms of a scalar, application defined metric, su¢theasumber of network hops
or network delay. Depending on the application, an objesthezld content or a locator
(address) of the associated content.

Pastry is completely decentralized, is self-configuringutomatically adapts to the
arrival, departure and failure of nodes, and it is scalafite number of nodes traversed,
as well as the number of messages exchanged while routingra rtquest is at most
logarithmic in the total number of nodes in the system.

Although Pastry is intended as a generic building block feerpto-peer applica-
tions, it was designed in the context of the PAST project,rdarhet based, peer-to-
peer global storage utility. PAST aims to provide strongsggtence, high availability,
scalability, content privacy and anonymity of clients atmtage providers. This paper
focuses on Pastry, PAST’s content location and routingesyst

The rest of this paper is organized as follows. Section 2qmissthe design of Pas-
try. Experimental results with a prototype implementatajrPastry are presented in
Section 3. Related work is discussed in Section 4 and Sestommcludes.

2 Design of Pastry

A Pastry system is a self-organizing overlay network of rmd¢éhere each node routes
client requests and is capable of storing applicationifipabjects. Any computer that
is connected to the Internet and runs the Pastry node s@&ftwear act as a Pastry node,
subject only to application-specific security policies.

Inserted objects are replicated across multiple nodessy$tem ensures, with high
probability, that the set of nodes over which an object idicaped is diverse in terms
of geographic location, ownership, administrative entigtwork connectivity, rule of
law and so forth.

Each node in the Pastry peer-to-peer overlay network igasdia 128-bit node
identifier (nodeld). The nodeld is used to indicate a node&tjpn in a circular names-
pace, which ranges frofito 2'28 — 1. This nodeld is drawn randomly when a node
joins the system. It is assumed that the nodeld is genergtechiigh-quality uniform
random number generator or a secure hash function, so teatethof existing node
identifier is uniformly distributed in the 128-bit namespac

www.manaraa.com

The fundamental capability Pastry provides is to efficigntlute messages among
the nodes in the system. Specifically, given a destinatigdedtld) of at least 128 bits,
Pastry routes an associated message to the node whose isodgahaerically closest to
the 128 most significant bits of the destld associated wighntiessage, among all live
nodes.

Furthermore, it is assumed that each object is assigned jantadh (objld) that is
at least 128 bits long. The set of existing objlds is furthesiemed to be uniformly
distributed. To insert an object, a client asks Pastry tde@message to the node
whose nodeld is numerically closest to the 128 most sigmifibés of the objld; that
node then stores the object. To look up an object, a clieniagiymn sends a message
using the objld as the destld; the receiving node responiiistivé requested object.

To achieve high availability and/or load balancing, an objgstored on thé nodes
whose nodelds are numerically closest to the objld. Theabigehen available as long
as one of thé& nodes is live and reachable (in the Internet) from a clieattitermore,
Pastry ensures, with high probability, that a lookup messagouted to one of thé
nodes that is near the client. This provides for load batemaieduced network load
and low client response time.

In the context of the PAST global storage utility, for instanthe objlds are formed
from a secure hash (SHA-1) of an object’'s name, content, lEmadbject owner’s iden-
tifier. An object is stored at the nodes with nodelds closest to the objld. As long as
one of thek copies is alive, Pastry guarantees that a lookup messabkeenibuted to
that node. Moreover, a lookup message in Pastry usuallyréissthes the node nearest
the client, among the live subset of theodes.

2.1 Pastry nodelds

A nodeld is sub-divided into a sequencdaiels where each level specifieslamain
represented by contiguous bits in the nodeldThe bits at positions+[to b (1+1) —1
specify the domain at levél That is, the most significamtbits of the nodeld indicate
the node’s domain at level 0, and so on. There2drdomains at each level, numbered
from0to2® — 1.

Pastry routes messages to the node whose nodeld is nurhyetioakst to a given
destld. This is accomplished as follows. At each routing seemessage whose destld
matches the local node’s nodeld up to levés forwarded to a node whose nodeld
matches the destld up to at ledst 1. For this purpose, each node maintains some
routing state, which we describe next.

2.2 Pastry node state

Each Pastry node maintaingauting table a neighborhood seand anamespace set
We begin with a description of the routing table. For eacleléy the routing table
contains the IP addresses23f— 1 nodes that have the same nodeld prefix as the local
node up to level — 1, but differ at level. Each of these nodes is@presentativef a
different domain at level.

! Typically a value of 3 or 4 would be used fbr

www.manaraa.com

In principle, any node whose nodeld matches the local notsdeld up to level
I — 1 and whose domain at levélequalsd can serve as a representative for domain
d. In practice, among all nodes with the correct nodeld préffig,node that is closest
to the present node in the network is chosen as the repréigentss will be shown in
Section 2.4, this ensures that message routing in Pastilpiexhood network locality.

The choice ofh involves a tradeoff between the size of the populated porib
the routing table (approximatelfog,, N] x (2° — 1), whereN is the total number of
existing Pastry nodes) and the maximum number of hops regjtarroute between any
pair of nodes [log,» N1) 2. With a value ofh = 4 and with as many ak)'? nodes, the
routing table contains only approximately 150 entries anthe worst-case a message
is routed through 10 nodes.

The neighborhood se¥/ contains the nodelds and IP addresses of #ignodes
that are closest (according the proximity metric) to thelomde. The neighborhood set
is not normally used in routing messages; its purpose wibbee clear in Section 2.5.

The namespace sétcontains the nodelds and IP addresses offthexisting nodes
whose nodelds are numerically closest and centered ardwntbt¢al node’s nodeld.
The namespace set is used during the message routing, aeddmelow. The set
is also used during object insertion, whéreeplicas of the inserted object are stored
on a subset of the namespace set. Typical valuef/foand|M| are2’ and2 x 2°,
respectively.

How the various tables of a Pastry node are initialized anidhtaized is the subject
of Section 2.5. Figure 1 depicts the state of a hypothetiaatr node with the nodeld
10233102 (base 4), in a system that uses 16 bit nodelds ardeaofa = 2.

2.3 Routing

The routing procedure is shown in pseudocode form belows. déixecuted whenever a
message with destl@ arrives at a node with nodeld. We begin by defining some
notation.

R the entry in the routing tabl& for domaini, 0 < i < 2° atlevell,0 < I < [128/b].
M;: the entry in the neighborhood tablé, representing the i-th closest nodeg i <
|M].

L;: the i-th closest nodeld in the namespace tdhle | |L|/2] < i < [|L|/2], where
negative/positive indices indicate nodelds smallerBartpan the present nodeld, re-
spectively.

D;: the domain of destld at levell.

shi(A, B): the length of the prefix shared amoAgand B, in levels.

(1) (L |jrjy2) <D < Ly |

(2) /I D is within range of our namespace set
3 forward toL;, s.th.|D — L;| is minimal,
(4) }elsef

(5) /I use the routing table
(6) Let! = shi(D, A);

2 We assume throughout this paper that nodelds are uniforisisitzlited.

www.manaraa.com

Neighborhoodet

02212102 | 22301203 | 31203203 | 33213321

Routingable
1 2212102 2301203 | 3203203

0
2
3

3

1 EZ
0 I 7 B
o | I T] [

Namespacset

Fig. 1. State of a hypothetical Pastry node with nodeld 10233462,2. All numbers are in base
4. The top row of the routing table represents level zero.

7) if (R # null) {

(8) forward toR,”";

© 1}

(10) else{

(1) /l rare case

(12) forwardtoI' € LU RU M, s.th.
(13) shl(T, D) > I,

(14) T — D| < |A-D|

15) }

(16) }

Given a message, the node first checks to see if the destidifiathe range of
nodelds covered by its namespace set (line 1). If so, theagess forwarded directly
to the destination node, namely the node in the namespaedsse nodeld is closest
to the destld (possibly the present node) (line 3).

If the destld is not covered by the namespace set, then thiegdable is used and
the message is forwarded to a node that shares a common pitixhe destld by
at least one more level (lines 6-8). In certain cases, it &sibbe that the appropriate
entry in the routing table is empty or the associated nodetsreachable (line 11—
14), in which case the message is forwarded to a node thagslaaprefix with the

www.manharaa.com

destld at least as long as the local node, and is numeridabgcto the destld than the
current nodeld. It follows from the properties of the rogtitable and namespace set
that such a node must always exist, unlgds /2| nodes with adjacent nodelds have
failed simultaneously.

This simple routing procedure always converges, becausestap takes the mes-
sages to a node that either (1) shares a longer prefix withestdithan the local node,
or (2) shares as long a prefix with, but is numerically closeht destld than the local
node.

Routing performancelt can be shown that a message reaches its destination in no
more than[log,» N'| steps in the common case, whé¥ds the total number of existing
Pastry nodes. Briefly, consider the three cases in the @utiacedure. If a message
is forwarded using the routing table (lines 6-8), then thteoerodes containing the
destination node is reduced by a factoRdfin each step, which means the destination
is reached iflog,» N steps. If the destld is within range of the namespace sets(lin
2-3), then the destination node is at most one hop away.

The third case arises when the destld is not covered by thesane set (i.e., it is
still more than one hop away from the destination), but there routing table entry.

In the absence of node failures, this means that a node inatiesponding domain
does not exist (lines 11-14). Due to the uniform distribated nodelds this case is
unlikely, provided Z| is sufficiently large. For instance, witfh| = 2° and|L| = 2 x 2°

it occurs in less than 2% and 0.4% of all cases, respectiVéien it happens, at most
one additional routing step results in virtually all cases.

In the event of many simultaneous node failures, the numbesuding steps re-
quired may be at worst linear iV, while the nodes are updating their state. In prac-
tice, routing performance degrades gracefully, as we witvg experimentally in Sec-
tion 3.1. Ultimately, a node may become unreachable wheeest||L|/2| nodes
with consecutive nodelds fail simultaneously. Howeveg tiuthe expected diversity
of nodes with adjacent nodelds, and with a reasonable chai¢g| (e.g.2"), the prob-
ability of this event is very low.

2.4 Network locality

In the previous section, we discussed Pastry’s convergamtéhe expected number of
routing hops. This section focuses on another aspect ofyasiuting performance,
namely its properties with respect to network locality. VW show that (1) the route
chosen for a message is likely to be “good” in terms of netwwdkimity, and (2) if an
object is stored at consecutive nodes, a query message for the object is likelyst
reach a node near the client, among k@odes.

Pastry’s notion of network proximity is based on a scalarxprity metric, such
as the number of IP routing hops, the network delay, or a coatlzin of these and
other factors. All that Pastry assumes is that the apptingprovides a function that
allows each Pastry node to determine the “distance” of a motfea given IP address
to itself. A node with a lower distance value is assumed to besrdesirable. An ap-
plication implements this function depending on its chatea proximity metric, using

www.manaraa.com

network services like traceroute, ping, or Internet sulon@ps and appropriate caching
and approximation techniques to minimize overhead.

Route locality Recall that the representative for each domain and levéieérrauting
table is chosen to be the node closest in the network to tlsepteode, among all nodes
with the given nodeld prefix. As a result, in each routing seemessage is forwarded
to the closest node with a nodeld that shares a longer comnedix pr is numerically
closer to the destld than the local node. That is, each stagsnihe message closer
to the destination in the namespace, while travelling tlstlpossible distance in the
network.

Since only local information is used, Pastry minimizes ttstaahce of the next rout-
ing step with no sense of direction. This procedure cleaplgsdnot guarantee that the
shortest path from source to destination is chosen; howit\tires give rise to reason-
ably good routes. Two facts are relevant to this statemerst, given a message was
routed from noded to nodeB at distancel from A, the message cannot subsequently
be routed to a node with a distance of less tHdrom A. This follows directly from
the routing procedure, assuming accurate routing tables.

Second, the expected distance traveled by a messages daghguccessive rout-
ing step is exponentially increasing. To see this, obsdra¢ & representative in the
routing table at level is chosen from a set of nodes of si2g/'2". That is, the rep-
resentatives at successive levels are chosen from an exgalhedecreasing number
of nodes. Given the random and uniform distribution of nadah the network, this
means that the expected distance of the closest reprasergaeach successive level
is exponentially increasing.

Jointly, these two facts imply that although it cannot bergngeed that the distance
of a message from its source increases monotonically atstepha message tends to
make larger and larger strides with no possibility of retngito a node withind; of
any nodel encountered on the route, whetgis the distance of the routing step taken
away from node. Therefore, the message has nowhere to go but towards tieatém.
Figure 2 illustrates this effect.

Locating the nearest replic&Ve now turn to our second claim; namely, amdngodes
with adjacent nodelds that store an object, a client quelylikély be routed first to
a node that is near the client. Observe that due to the randsigrament of nodelds,
nodes with adjacent nodelds are likely to be widely dispkisehe network. Thus, it
is important to direct a lookup query towards a replica teddcated relatively near the
client.

Recall that Pastry routes messages towards the node wittottedd closest to the
destld, while attempting to travel the smallest possibétedice in each step. Therefore,
among the: nodes storing an object, a query message tends to first resateanear the
client. Of course, this process only approximates routinthe nearest replica. Firstly,
as discussed above, Pastry makes only local routing desigioinimizing the distance
traveled on the next step with no notion of direction.

Secondly, since Pastry routes primarily based on nodelfixpee it sometimes
misses nearby replicas stored on nodes with a differentqtiedin the object. In the
worst casek/2 — 1 of the replicas are stored on nodes whose nodelds differ fhem

www.manaraa.com

Fig. 2. Trajectory of a typical message in the Pastry network, bagedxperimental data. The
message cannot re-enter the circles representing thencdéstaf each of its routing steps away
from intermediate nodes. Although the message may pairtiy ‘back” during its initial steps,
the exponentially increasing distances traveled in eaghaduse it to move toward its destination
quickly.

objld in their domain at level zero. As a result, Pastry wilifiroute towards the nearest
among thek/2 + 1 remaining replicas. Despite this anomaly, results preskint Sec-
tion 3.3 show that this and similar cases occur infrequesttigugh that Pastry is able
to locate the nearest replica in approximately 60%, and dtieectwo nearest replicas
in approximately 80% of all queries.

Moreover, we are exploring heuristics to overcome the prefismatch issue de-
scribed above. One very simple heuristic we have studiedsedb on estimating the
density of nodelds in the namespace using local informaBased on this estimation,
the heuristic detects when a message approaches the regtiohan object, and then
switches to numerically nearest address based routing&tdd the nearest replica. Our
results show that this heuristic allows Pastry to locatertbarest object in over 75%,
and one of the two nearest replicas in over 91% of all quesiethe expense of a slight
increase in the average number of hops taken.

2.5 Self-configuration and adaptation

In this section, we discuss how Pastry deals with changesda membership. In partic-
ular, we describe the protocols handling the arrival ancadepe of nodes in the Pastry
network. Throughout this discussion, we assume that thrimity space defined by

the chosen proximity metric is euclidian; that is, the tgatation inequality holds for

distances among Pastry nodes. If this assumption does hihtrbating correctness is
unaffected; however, the locality properties of Pastrytesunay suffer.

Node arrival When a new node arrives, it needs to initialize its tabled,then inform
other nodes of its presence. We assume the new node knovedlyrdétoout a nearby
(in the network) Pastry nodd that is already part of the system. Such a node can be

www.manaraa.com

detected automatically, for instance, using “expanding’riP multicast, or obtained
by the system administrator through outside channels.

The new node draws a random nodé&fdand then asks! to route a special “join”
message with the destination id equalXo Like any message, the join will be routed
to the existing nod& whose id is numerically closest 8.

In response to receiving the “join” request, nodesZ, and all nodes encountered
on the path fromA to Z send their state t&. The new nod€& inspects this information,
requests state from additional nodes, and then initialiteestate, using a procedure
describe below. FinallyX informs any nodes that need to be aware of its arrival. We
will show that this procedure ensures tBainitializes its state with appropriate values,
and that the state of all other interested nodes are modifipariately.

First, consider the neighborhood set. Since nddis assumed to be close to the
new nodeX, A’s neighborhood set is a close approximation@$ neighborhood set,
and can therefore be used to initialize the latter. Secandes has the closest ex-
isting nodeld toX, its namespace set is the basis\of namespace set. Furthermore,
7 providesX with information about object replicas stored within itsnmespace set,
allowing X to properly forward lookup messages for objlds within thaga of the
namespace set.

Next, we consider the routing table, starting at level z&¥e. consider the most
general case, where the nodelds4and X share no common prefix. Since all nodes
share the same level zero domains, the representativess ¢kl only depend on a
node’s location. Letd; denote noded’s row of the routing table at levél SinceA is
assumed to be close 16, A, closely approximates the optimal values fgg. Other
levels of A’s routing table are of no use 4, sinceA’s and X''s ids share no common
prefix.

However, appropriate values fa&f; can be taken fron®,, whereB is the first node
encountered along the route fromto Z. To see this, observe that; mentions the
same domains a&; becauseX andB share the same prefix at lev@l Intuitively, it
would appear that the choice of representative®jnis not appropriate, since these
nodes are close tB, but not necessarily t&'.

To see why this is not so, recall that the representativesiett successive level
are chosen from an exponentially decreasing set size. fidreréhe expected distance
from B of its B, representatives is much larger than the expected disteancded from
nodeA to B. As a result,B; is still a good approximation fok; . This same argument
applies for each successive level and routing step, asteepit Figure 3.

After X has initialized its routing table in this fashion, it has egb information to
participate in the Pastry network. However, at this poimtduting table and neighbor-
hood set only approximate the closest nodes (within eachadgnirhe quality of this
data must be improved to avoid cascading errors that co@dtaally lead to poor route
locality. For this purpose, there is a second stage in wRichquests the state from each
of the nodes in its routing table and neighborhood set. it tempares the distance of
corresponding representatives found in those nodes’'nmeutbles and neighborhood
sets, respectively, and updates its own state with any chases it finds.

Intuitively, a look at Figure 3 illuminates why incorponagj the state of nodes men-
tioned in the routing and neighborhood tables from stagepooédes good representa-

www.manaraa.com

Fig. 3. Routing step distance versus distance of the represesdativeach level (based on exper-
imental data). The circles around the n-th node along thierfsam A to Z indicate the average
distance of the node’s representatives at levéllote thatX lies within each circle.

tives for X'. The circles show the average distance of the represeafadim each node
along the route, corresponding to the levels in the routaigdet Observe thak lies
within each circle, albeit off-center. In the second sta§epbtains the state from the
representatives discovered in stage one, which are locata average distance equal
to the perimeter of each respective circle. These statesinulisde representatives that
are appropriate foX, but were not discovered h¥ in stage one, due to its off-center
location.

Finally, X transmits a copy of its resulting state to each of the nodesdan its
neighborhood set, namespace set, and routing table. Thakes in turn update their
own state based on the information received. Experimeasailts in Section 3.2 show
that this procedure initializes a node’s state correctly #at it updates the state of rel-
evant nodes appropriately. The total cost of joining a nadéhe number of RPCs ex-
changed, i®)(log,: N). The constant is abo8tx 2° (omitting the second stage reduces
the constant t@ x 2°). For 100,000 nodes the largest message size is approyymate
KByte.

Pastry uses an optimistic approach to controlling concumede arrivals and de-
partures. Since the arrival/departure of a node affectg ardmall number of exist-
ing nodes in the system, contention is rare and an optimagiiroach is appropriate.
Briefly, whenever a nodd provides state information to a nods it attaches a times-
tamp to the messag®. adjusts its own state based on this information and evdgptual
sends an update messagedtde.g., notifyingA of its arrival). B attaches the original
timestamp, which allows! to check if its state has since changed. In the event that its
state has changed, it responds with its updated stat&andtarts its operation.

Node departureNodes in the Pastry network may fail or depart without wagniim
this section, we discuss how the Pastry network handlesrsodé departures.

Node failures are detected when another node attempts tagt@node in its rout-
ing table or namespace set and there is no response. AsregblaiSection 2.3, such an
event does not normally delay the routing of a message, sirceessage can be for-
warded to another node. However, a replacement must be foyrdserve the integrity
of the routing table and namespace set.

www.manaraa.com

To replace a failed node in the namespace set, a node cotitadtge node with
the largest index on the side of the failed node, and asksthdg for its namespace
table. For instance, if; failed for ||L|/2] < i < 0, it requests the namespace ta-
ble fromL_| 1 /2|. Let the received namespace set/BeThis set partly overlaps the
present node’s namespace setind it contains nodes with nearby ids not presently in
L. Among these new nodes, the appropriate one is then chogesetd intoL, verify-
ing that the node is actually alive by contacting it. Thisq@dure guarantees that each
node lazily repairs its namespace set unlgg$/2 | nodes with adjacent nodelds fail.
Due to the diversity of nodes with adjacent nodelds, sucliaésis very unlikely even
for modest values dfL|.

To repair a failed representatiié/, a node contacts first another representative
Rl.i # d at the same level, and asks for its value Rff. In the event that none of the
representatives at levéhave a pointer to a live representative in domairthe node
next contacts a representatiEéH ,i # d, thereby casting a wider net to include rep-
resentatives that are likely to be further away in the nekwdhis procedure eventually
finds a representative if one exists.

The neighborhood set is not normally used in the routing ofsages, yet it is
important to keep it current, since the set is needed wherinmgnode requests it.
For this purpose, a node attempts to contact each membeeaidighborhood set
periodically (e.g. once an hour) to see if it is still afivéf a member is not responding,
the node asks other members for their neighborhood talilesks the distance of each
of the newly discovered nodes, and updates it own neighloarbet accordingly.

Experimental results in Section 3.2 demonstrate Pastfigst@/eness in repairing
the node state in the presences of node failures, and guémifcost of this repair in
terms of the number of messages exchanged.

3 Experimental results

In this section, we present experimental results obtainédavprototype implementa-
tion of Pastry. The Pastry node software was implementedva.Jlo be able to per-
form experiments with large networks of Pastry nodes, we imgplemented a network
simulation environment, where up to 100,000 Pastry nodasga over a simulated
network.

All experiments were performed on a quad-processor ComgphaServer ES40
(500MHz 21264 Alpha CPUs) with 2GBytes of main memory, ruigriTrue64 UNIX,
version 4.0F. The Pastry node software was implementedvim dad executed using
Compag'’s Java 2 SDK, version 1.2.2-6 and the Compaq Fast¥iMion 1.2.2-4.

The Pastry nodes normally use Java remote object invoc@idH) to commu-
nicate with each other. However, in all experiments rembitethis paper, the Pastry
nodes were configured to run in a single Java VM. This is |grgrainsparent to the
Pastry implementation—the Java runtime system autonigticsduces communica-
tion among the Pastry nodes to local object invocations.

The simulated network environment maintains distancerinédion between the
Pastry nodes. Each Pastry node is assigned a location ima;plaordinates in the

% An inactive node should do the same for its namespace sebatidg table.

www.manaraa.com

plane are randomly assigned in the ranf@el000]. As Pastry is an overlay network,
we assume that the underlying networking infrastructueslusy Pastry provides total
connectivity between all the nodes.

To drive the Pastry system, fictitious objects are insertetiratrieved. The objlds
are generated by computing SHA-1 secure hashcodes of URlextenl by a Web
crawler from several major University Web sites in the USallrexperiments, 5 replicas
were stored for each inserted objekt£ 5).

3.1 Routing performance

The first experiment shows the number of routing hops as aifumof the size of the
Pastry network. We vary the number of Pastry nodes from 1t®Q00,000 in a network
whereb = 4, |L| = 16, |M| = 32. 100,000 objects are inserted and then each object
is retrieved from a different, randomly chosen startingedeigure 4 show the results.
“Standard” is the normal Pastry routing procedure, “Estiod is the routing proce-
dure augmented with the heuristic mentioned in Section“2@gy N” shows the value
logs» N and is included for comparison[lpg,: N is the expected maximum number
of hops required to route in a network containignodes). The results show that the
number of route hops scale with the size of the network aseggeMoreover, the cost
of the routing heuristic to improve the location of nearbplieas, in terms of the av-
erage number of route hops, is insignificant. Both “Stantand “Estimation” require
less tharlog,s N hops due to the namespace set. Occasionally, a hop is savadsiee
the destination node lies in the namespace set, and theyefoouted to directly, rather
than requiring an extra hop.

4.5

4 S
-
3.5 // LT |
5 // /
//.'
=2 [y
€ 254 /
Q
o]
@ [
g 2
<
(=2
S
5 151
>
<
1 ——Logy
—&- Standard
0.5 Estimation ||
o | [[[]]
1000 10000 100000

Numbeafodes

Fig. 4. Number of routing hops versus number of Pastry notles 4, |L| = 16, | M| = 32 and
100,000 objects.

www.manaraa.com

The second experiment compares the distance a messads trsivig Pastry with
that of a fictitious routing scheme that maintains completging tables. Here, distance
traveled is the sum of the distances between consecutivesrerttountered along the
route in the simulated network. For the fictitous routingestie, the distance traveled
is simply the distance between the source and the destinatide. The goal of this
experiment is to quantify the cost, in terms of distancedled, of maintaining only
small routing tables in Pastry.

The number of nodes varies between 1,000 and 100,000, amdiagat, | L| = 16,
|M| = 32 and 100,000 objects are inserted and retrieved. Figure wsstiee total (cu-
mulative) distance traveled using Pastry during the 10Dr86ieval operations (labeled
“Pastry”), compared to the distance traveled if every node & complete routing ta-
ble (labeled “Complete routing tables”). With the complegdating table, it is assumed
that each node has an entry for every other node in the sy3teendistance with the
complete routing table is the distance between the sourte and the node storing the
same replica that is reached when using Pastry (not nedgdbarclosest replica).

The results show that the Pastry routes are only approxijnd@ longer than
those achieved with complete routing tables. Considehagthe routing tables in Pas-
try contain only approximatelfiog.» N x (2° —1) entries, this result is quite good. For
100,000 nodes the Pastry routing tables contain approgisgn@b entries, compared to
99,999 in the case of complete routing tables.

5.00E+07 ‘ ‘

4.50E+07 <

4.00E+07

3.50E+07

41’/.\.\ |-y
3.00E+07 - |

2.50E+07

Distance

2.00E+07
1.50E+07 -

‘ Pastry
1.00E+07 | - Completeoutingable

5.00E+06

0.00E+00 T
1000 10000 100000
Numbeafodes

Fig. 5. Route distance versus number of Pastry nobles,4, |L| = 16, |M| = 32, and 100,000
objects.

We also determined the routing throughput, in messagesguoemsl, of a Pastry
node. Our unoptimized Java implementation handled ové&XBplessages per second.
This confirms that the routing procedure is very lightweight

www.manaraa.com

3.2 Maintaining the network

Figure 6 shows the quality of the routing tables, and how tkterg of information
exchange during a node join operation affects the qualit@@fesulting routing tables.
In this experiment, 5,000 nodes join the Pastry network onere. After all nodes
joined, the routing tables were examined. The parameters ar4, |L| = 16, |M| =
32.

Three options were used to gather information when a noaes j6EL" is a hypo-
thetical method where the joining node considers only the@griate row from each
node along the route from itself to the node with the closgstiag nodeld (see Sec-
tion 2.5). With “WT”, the joining node fetches the entiretstaf each node along the
path, but does not fetch state from the resulting repretieesa This is equivalent to
omitting the second stage. “WTF” is the actual method usd@astry, where state is
fetched from each node that appears in the tables after thetage.

15 4 1 —1
| | OEmpty ||
B Sub-Optimal

131 || @Optimal [|

Numbegdntrieoutingable
[}
i
\

14 — — —

SL ‘ wT ‘WTF
Leved

SL ‘ wT ‘WTF
Leve?

SL ‘ wT ‘WTF
Level

SL ‘ wT ‘WTF
Leved

Fig. 6. Quality of routing tablesh = 4, |L| = 16, |M| = 32 and 5,000 nodes.

The results are shown in Figure 6. For levels 0 to 3, we showgtradity of the
routing table entries with each method. With 5,000 nodesbandt, levels 2 and 3 are
not fully populated, which explains the missing entriesighd'Optimal” means that the
best (closest in the network) representative appeareceirotiting table, “sub-optimal”
means that the representative was not the closest or wasgiss

The results show that Pastry’s method of node integratidil{") is highly effec-
tive in initializing the routing tables. On average, lesarti entry per level of the rout-
ing able is not the best choice. Moreover, the comparisoh V@t” and “WT” shows
that less information exchange during the node join openatbmes at a dramatic cost
in routing table quality.

www.manaraa.com

Node failuresThe next experiment explores Pastry’s behaviour in thegures of node
failures. In our experiment, 100,000 objects are insen¢d & 5,000 node Pastry net-
workwithb = 4, |L| = 16, |M| = 32. Then, 10% (500) randomly selected nodes failed
silently. After the failure, 2 lookups were performed forchaof the objects (200,000
lookups total) from randomly selected nodes, while the netdée repair facilities in
Pastry were disabled. This allows us to measure the full anpgthe failures on Pas-
try’s routing performance. Next, the node state repairlitées were enabled, and an-
other 200,000 lookups were performed from the same locstion

Figure 7 shows the average routing table quality acrossoalén for levels 0-2, as
measured before the failures, after the failures, and #fierepair. Note that in this
figure, missing entries are shown separately from sub-@témtries. Also, recall that
Pastry lazily repairs namespace set and routing tableesrthen they are being used.
As such, routing table entries that were not used during 8@&0D0 lookups are not
discovered and therefore not repaired. To isolate the ®@ffstess of Pastry’s repair
procedure, we excluded table entries that were never used.

15

W Empty
OMissing

O Sub-Optimal
E Optimal

[
S
I

= = = =
S} [N w

Numbeaéntriegnoutingable

©
L

Leved Level Leve?

Néail lLoepair ﬁLepair T(ﬁil NoeL)air RepLir Néail ‘Noepair ‘Repair

Fig. 7. Quality of routing tables before and after 500 node failubes: 4, |L| = 16, |[M| = 32
and 5,000 starting nodes.

The results show that Pastry recovers all missing tabléesniand that the quality
of the entries (fraction of optimal entries) approaches bedore the failures. At level
zero, the average number of best entries after the repgipioaimately one below that
prior to the failure. However, although this can't be seethimfigure, our results show
that the actual distance between the suboptimal and thmaltépresentatives is very
small. This is intuitive, since the average distance ofll@ego representatives is very
small. Nevertheless, we are currently investigating ahslimprovement to our repair
procedure that we expect to improve this result.

www.manaraa.com

Note that the increase in empty entries at levels 1 and 2 gféefailures is due to
the reduction in the total number of Pastry nodes, whichdases the sparseness of
the tables at the higher levels. Thus, this increase doesomstitute a reduction in the
quality of the tables.

Figure 8 shows the impact of failures and repairs on the rquédity. The left bar
shows the average number of hops before the failures; thelelidr shows the average
number of hops after the failures, and before the tables vegraired. Finally, the right
bar shows the average number of hops after the repair.

The data shows that without repairs, the stale routing tsthle causes as significant
deterioration of route quality. After the repair, howewdie average number of hops is
only slightly higher than before the failures.

Averag@opgeiookup
N N N
N ~ N o N ©
~ [6)] © (52} © (5]

N
o
a

2.6

Né&ailure Failurevithooutingable Failurevithoutingableepair
repair

Fig. 8. Number of routing hops versus node failuress 4, |L| = 16, |M| = 32, 100,000 objects
and 5,000 nodes with 500 failing.

We also measured the average cost, in messages, for repthigitables after node
failure. In our experiments, a total of 57 RPCs were needeaverage per failed node
to repair all relevant table entries.

3.3 Replicarouting

The next experiment explores Pastry’s ability to locatdicag near the client. In a Pas-
try network of 10,000 nodes with= 3 and|L| = 8, 100,000 object are being inserted
with 5 replicas each, and then looked up at randomly choseesid-igure 9 shows
the percentage of lookups that reached the closest replisat{er replicas), the second
closest replica (1 better replica), and so on. Results aisifor the three different pro-
tocols for initializing a new node’s state, for the normalitiog protocol as well as the
heuristic mentioned in Section 2.4 and for an optimal versibthe heuristic “Perfect

www.manaraa.com

estimation”. The heuristic approach estimates the nantespaverage of other nodes
namespace sets, using an estimate based on its own namesgmceverage. Perfect
estimation ensures that this estimate of a nodes namesplaceverage is correct for
every node.

With the standard routing procedure and normal node joipiragocol, Pastry is
able to locate the closest replica 68% of the time, and onkeofdp two replicas 87%
of the time. With the heuristic routing option, this figureirases to 76% and 92%,
respectively. The lesser routing table quality resultiranf the “SL” and “WT" meth-
ods for node joining have a strong negative effect on Pastpility to locate nearby
replicas, as one would expect. Also, the results show tleab¢turistic approach is only
approximately 2% worse than best possible results usinfggtezstimation.

The results show that Pastry is effective in locating a oepliear the client in the
vast majority of cases, and that the use of the heuristic angs the performance of
Pastry. Furthermore, the heuristic performance is conippar® using perfect estima-
tion.

100
90 -
80 -

70 A
m4

601 m3
50 o2
40 1 mL

mo

30 -

—

Percentagelbokups

20 A
10 4

STANDARD
ESTIMATION
PERFECT
ESTIMATION

STANDARD
ESTIMATION
PERFECT
ESTIMATION

STANDARD
ESTIMATION

PERFECT
ESTIMATION

%)
2
2
3

w

3

F

Fig. 9. Number of closer replicas to the client than the replicaaisced. § = 3, |L| = 8,
|M| = 16, 10,000 nodes and 100,000 objects).

4 Related Work

There are currently many peer-to-peer systems under dewelot that require highly
scalable content location and request routing. Some oétiestems are intended as file
sharing facilities, such as Gnutella [3], Freenet [2], arapster [1]. Whilst these sys-
tems have proved popular, their location and routing athors suffer from limitations.
Napster uses a centralized document location discovewjceewhich limits its scala-
bility. In Gnutella, the use of a broadcast based protoooitsi the system’s scalability

www.manaraa.com

and incurs a high bandwidth requirement. Furthermore, ¢iéimg algorithm does not
guarantee to find an existing object. The same is also truErkenet. These systems
were designed for the large-scale sharing of mp3 files, an#t woder the assumption
that there will be many replicas of a popular song, and tloeegfthe probability of
finding it is high. This approach is not suitable for genepto-peer systems.

Pastry’s routing scheme bears some similarity to the worlelayxton et al. [6, 7].
The general approach of routing using prefix matching on thigdds used in both
systems, which can be seen as a generalization of hyperoukieg. However, there
are important differences. In Plaxton et al.'s approacérglis a single node that holds
information for a particular object, which makes the systmceptible to failure. In
Pastry, on the other hand, replication is used for faultrtaiee. Plaxton et al. also
assume a static configuration, while Pastry assumes a dgreysiem where nodes
are free to join and leave at any time. Furthermore, in ordeachieve good locality,
Plaxton et al. assume knowledge of the location of all notldss system; Pastry merely
assumes that a node can measure the distance from itselfttoeamode.

There are a number of research projects focusing on pegedo-storage utilities,
such as FarSite [4] and Oceanstore [5]. Farsite uses abdit#d directory service to
locate content. Unlike in Pastry, this location functiomds integrated with the routing
infrastructure.

Oceanstore uses a two phase approach to content locatioroatidg. The first
stage is probabilistic, using a generalization of Bloonefgt If that stage fails to find
an object, then a location and routing scheme called Tapesstrsed [8]. Tapestry is
based on Plaxton et al. but extends that earlier work in sédémensions. Like Pastry,
Tapestry replicates objects for fault resilience and atdlity and supports dynamic
node addition and recovery from node failures. HowevertrRasd Tapestry differ in
the approach they take for replicating files and in the way #@hieve locality.

There has been significant prior work on overlay networks.odarlay network
consists of a collection of nodes placed strategically widn existing network infras-
tructure, and these nodes provide a network abstractiosudls, Pastry can be seen as
an overlay network that provides an object discovery serviknother example of an
overlay network is the Overcast system [9], which is one oEsal overlay networks
aimed at providing reliable multicasting or content disfition. Overcast provides a
single-source multicast stream distribution service.

There has been considerable work on routing in general, Bparticular interest is
the work on hypercube and mesh routing in parallel compufds®, more recently the
work on routing in ad hoc networks, for example GRID [10] ahd touting algorithms
used in PEN [11]. However, the challenges in developingingualgorithms for ad
hoc networks differ, in as much as the main problem is deviobility. In Pastry, we
assume that there is already a network infrastructure stetpable of routing messages
between two nodes of the Pastry network, and the emphasissalsconfiguration and
the integration of content location and routing.

In the interest of scalability, Pastry nodes only use lonfdrimation, while tradi-
tional routing algorithms (like link-state and distancectager methods) globally prop-
agate information about routes to each destination. Thibajlinformation exchange

www.manaraa.com

limits the scalability of these routing algorithms, nedtdig a hierarchical routing
architecture like the one used in the Internet.

Several prior works consider issues in replicating Web ennin the Internet, and
selecting the nearest replica relative to a client HTTP g{&2—14]. Pastry provides a
more general infrastructure aimed at a variety of peerder@pplications.

Another related area is that of naming services, which aigelg orthogonal to
Pastry’s content location and routing. Lampson’s Globafiiey System (GNS) [15]
is an example of a scalable naming system that relies on arbier of name servers
that directly corresponds to the structure of the name sp@keriton and Mann [16]
describe another scalable naming service. Like GNS, theirice is a pure naming
service and relies on a hierarchy of name resolvers thatcteflbe structure of the
name space.

Finally, attribute based and intentional naming systents 18], as well as direc-
tory services [19, 20] resolve a set of attributes that deedhe properties of an object
to the address of an object instance that satisfies the giamegies. Thus, these sys-
tems support far more powerful queries than Pastry. Howdhisrpower comes at the
expense of scalability, performance and administrativertogad. Pastry supports the
routing to a particular object identifier, rather than bagadhe properties of the object.
Such systems could be potentially built upon Pastry.

5 Conclusion

We presented and evaluated Pastry, a generic, decentraléms-to-peer content lo-
cation and routing system for very large, self-configuringay networks of nodes
connected via the Internet. Pastry is completely decepéd| fault-resilient, scalable,
and reliably locates a copy of the requested content if oistsMoreover, Pastry usu-
ally locates a copy of the requested content that is neafitr@.cPastry can be be used
as a building block in the construction of a variety of pempker Internet applications
like global file sharing, file storage, and naming systems.

Pastry takes into account network locality when routing saggs. In each routing
step, Pastry chooses the nearest node that is closer inrtiespace to the destination.
Experimental results show that Pastry exhibits good ndtlamrality and that Pastry is
usually able to locate the nearest copy of a replicated tbjelditional experimental
results with as many as 100,000 nodes show that Pastry sealleghat it is fully self-
configuring and that it can gracefully adapt to node failures

References

1. Napster. http://www.napster.com/.

2. lan Clarke, Oskar Sandberg, Brandon Wiley, and Theodord&lg. Freenet: A distributed
anonymous information storage and retrieval system.Wbrkshop on Design Issues in
Anonymity and Unobservabilitpages 311-320, July 2000. ICSI, Berkeley, CA, USA.

3. The Gnutella protocol specification, 2000. http://dgs2ccom/GnutellaProtocol04.pdf.

4. W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feégitof a serverless distributed
file system deployed on an existing set of desktop pc®rat. SIGMETRICS20Q(hages
34-43, 2000.

www.manaraa.com

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

John Kubiatowicz et al. Oceanstore: An architecture fobgl-scale persistent store. In
Proc. ASPLOS'2000November 2000.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessingoyezopies of replicated ob-
jects in a distributed environment. Rroc. 9th ACM Symp. on Parallel Algorithms and
Architecturespages 311-320, June 1997. Newport, Rhode Island, USA.

. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessinghyampies of replicated objects

in a distributed environmeniTheory of Computing Systen®2:241-280, 1999.

. Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. J@peAn infrastructure for

fault-resilient wide-area location and routing, 2001. ®ittked for publication.

. John Jannotti, David K. Gifford, Kirk L. Johnson, M. FraKaashoek, and James W.

O'Toole. Overcast: Reliable multicasting with an overlagtwork. InProc. of OSDI 2000
October 2000.

Jinyang Li, John Jannotti, Douglas S. J. De Couto, David&ger, and Robert Morris. A
scalable location service for geographical ad hoc routingroc. of ACM MOBICOM 2000
August 2000.

Frazer Bennett, David Clarke, Joseph B. Evans, Andy Eioppan Jones, and David Leask.
Piconet - embedded mobile networkingEE Personal Communicationd(5):8—15, Octo-
ber 1997.

Yair Amir, Alec Peterson, and David Shaw. Seamlesshcsielg the best copy from Internet-
wide replicated web servers. Proceedings of the 12th International Symposium on Dis-
tributed ComputingAndros, Greece, September 1998.

Jussi Kangasharju, James W. Roberts, and Keith W. Resforidance evaluation of redi-
rection schemes in content distribution networks. Pioceedings of the 4th Web Caching
Workshop San Diego, CA, March 1999.

Jussi Kangasharju and Keith W. Ross. A replicated actite for the domain name system.
In Proceedings of the IEEE Infocom 2Q0@! Aviv, Israel, March 2000.

Butler Lampson. Designing a global name servicePrdoceedings of Fifth Symposium on
the Principles of Distributed Computingages 1-10, August 1986.

David R. Cheriton and Timothy P. Mann. Decentralizingl@bgl naming service for im-
proved performance and fault toleran@é&CM Transactions on Computer Syste(®):147—
183, May 1989.

Mic Bowman, Larry L. Peterson, and Andrey Yeatts. Ursvekn attribute-based name
server.Software—Practice and Experien@9(4):403—-424, April 1990.

William Adjie-Winoto, Elliot Schwartz, Hari Balakristan, and Jeremy Lilley. The design
and implementation of an intentional naming system.Pceedings of the Seventeenth
ACM Symposium on Operating System Principikgawah Island, SC, December 1999.

J. Reynolds. RFC 1309: Technical overview of direct@mviges using the x.500 protocol,
March 1992.

Mark A. Sheldon, Andrzej Duda, Ron Weiss, and David Kfdgif. Discover: A resource
discovery system based on content routing.Plnceedings of the 3rd International World
Wide Web Conferenc&995.

www.manaraa.com

