
www.manaraa.com

Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems

Antony Rowstron1 and Peter Druschel2?1 Microsoft Research Ltd, St. George House,
1 Guildhall Street, Cambridge, CB2 3NH, UK.

antr@microsoft.com2 Rice University MS-132, 6100 Main Street,
Houston, TX 77005-1892, USA.
druschel@rice.cs.edu
PRELIMINARY DRAFT

Abstract. This paper presents the design and evaluation of Pastry, a scalable,
distributed object location and routing scheme for wide-area peer-to-peer appli-
cations. Pastry performs application-level routing and object location in a poten-
tially very large overlay network of nodes connected via theInternet. It can be
used to support a wide range of peer-to-peer applications like global data storage,
global data sharing, and naming.
An insert operation in Pastry stores an object at a user-defined number of diverse
nodes within the Pastry network. A lookup operation reliably retrieves a copy of
the requested object if one exists. Moreover, a lookup is usually routed to the node
nearest the client issuing the lookup (by some measure of proximity), among the
nodes storing the requested object. Pastry is completely decentralized, scalable,
and self-configuring; it automatically adapts to the arrival, departure and failure
of nodes.
Experimental results obtained with a prototype implementation on a simulated
network of up to 100,000 nodes confirm Pastry’s scalability,its ability to self-
configure and adapt to node failures, and its good network locality properties.

1 Introduction

Peer-to-peer Internet applications for global file sharinglike Napster, Gnutella and
FreeNet [1–4] have recently gained popularity. Several research projects aim at con-
structing other types of peer-to-peer applications and understanding more of the issues
and requirements of such applications and systems [5, 4]. Peer-to-peer systems can be
characterized as distributed systems in which all nodes have identical capabilities and
responsibilities, and all communication is symmetric.

One of the key problems in large-scale peer-to-peer applications is to provide ef-
ficient algorithms for application-level routing and location of content within the net-
work. Currently, each peer-to-peer application uses it ownapproach to this problem.
For instance, Napster locates content using a centralized Website; Gnutella relies on? Work done in part while visiting Microsoft Research, Cambridge, UK.

www.manaraa.com

broadcast to locate content; and FreeNet uses randomized content routing that gains
scalability and a degree of anonymity at the expense of reliable content location.

This paper presents Pastry, a generic, decentralized peer-to-peer content location
and routing system for very large, self-configuring overlaynetworks of nodes connected
via the Internet. Pastry is completely decentralized, fault-resilient, scalable, and reliably
locates a nearby copy of the requested content. Pastry can bebe used as a building
block in the construction of a variety of peer-to-peer Internet applications like global
file sharing, file storage, and naming systems.

An insert operation in Pastry stores an object at a user-defined numberof diverse
nodes within the Pastry network. Alookupoperation reliably retrieves a copy of the re-
quested object if one exists. Usually, the object is retrieved from the live node “nearest”
the client issuing the lookup, among the nodes storing the object. Proximity is measured
here in terms of a scalar, application defined metric, such asthe number of network hops
or network delay. Depending on the application, an object can hold content or a locator
(address) of the associated content.

Pastry is completely decentralized, is self-configuring, it automatically adapts to the
arrival, departure and failure of nodes, and it is scalable.The number of nodes traversed,
as well as the number of messages exchanged while routing a client request is at most
logarithmic in the total number of nodes in the system.

Although Pastry is intended as a generic building block for peer-to-peer applica-
tions, it was designed in the context of the PAST project, an Internet based, peer-to-
peer global storage utility. PAST aims to provide strong persistence, high availability,
scalability, content privacy and anonymity of clients and storage providers. This paper
focuses on Pastry, PAST’s content location and routing system.

The rest of this paper is organized as follows. Section 2 presents the design of Pas-
try. Experimental results with a prototype implementationof Pastry are presented in
Section 3. Related work is discussed in Section 4 and Section5 concludes.

2 Design of Pastry

A Pastry system is a self-organizing overlay network of nodes, where each node routes
client requests and is capable of storing application-specific objects. Any computer that
is connected to the Internet and runs the Pastry node software can act as a Pastry node,
subject only to application-specific security policies.

Inserted objects are replicated across multiple nodes. Thesystem ensures, with high
probability, that the set of nodes over which an object is replicated is diverse in terms
of geographic location, ownership, administrative entity, network connectivity, rule of
law and so forth.

Each node in the Pastry peer-to-peer overlay network is assigned a 128-bit node
identifier (nodeId). The nodeId is used to indicate a node’s position in a circular names-
pace, which ranges from0 to 2128 � 1. This nodeId is drawn randomly when a node
joins the system. It is assumed that the nodeId is generated by a high-quality uniform
random number generator or a secure hash function, so that the set of existing node
identifier is uniformly distributed in the 128-bit namespace.

www.manaraa.com

The fundamental capability Pastry provides is to efficiently route messages among
the nodes in the system. Specifically, given a destination id(destId) of at least 128 bits,
Pastry routes an associated message to the node whose nodeIdis numerically closest to
the 128 most significant bits of the destId associated with the message, among all live
nodes.

Furthermore, it is assumed that each object is assigned an object id (objId) that is
at least 128 bits long. The set of existing objIds is further assumed to be uniformly
distributed. To insert an object, a client asks Pastry to route a message to the node
whose nodeId is numerically closest to the 128 most significant bits of the objId; that
node then stores the object. To look up an object, a client similarly sends a message
using the objId as the destId; the receiving node responds with the requested object.

To achieve high availability and/or load balancing, an object is stored on thek nodes
whose nodeIds are numerically closest to the objId. The object is then available as long
as one of thek nodes is live and reachable (in the Internet) from a client. Furthermore,
Pastry ensures, with high probability, that a lookup message is routed to one of thek
nodes that is near the client. This provides for load balancing, reduced network load
and low client response time.

In the context of the PAST global storage utility, for instance, the objIds are formed
from a secure hash (SHA-1) of an object’s name, content, and the object owner’s iden-
tifier. An object is stored at thek nodes with nodeIds closest to the objId. As long as
one of thek copies is alive, Pastry guarantees that a lookup message will be routed to
that node. Moreover, a lookup message in Pastry usually firstreaches the node nearest
the client, among the live subset of thek nodes.

2.1 Pastry nodeIds

A nodeId is sub-divided into a sequence oflevels, where each level specifies adomain,
represented byb contiguous bits in the nodeId1. The bits at positionsb�l to b�(l+1)�1
specify the domain at levell. That is, the most significantb bits of the nodeId indicate
the node’s domain at level 0, and so on. There are2b domains at each level, numbered
from 0 to2b � 1.

Pastry routes messages to the node whose nodeId is numerically closest to a given
destId. This is accomplished as follows. At each routing step, a message whose destId
matches the local node’s nodeId up to levell is forwarded to a node whose nodeId
matches the destId up to at leastl + 1. For this purpose, each node maintains some
routing state, which we describe next.

2.2 Pastry node state

Each Pastry node maintains arouting table, a neighborhood setand anamespace set.
We begin with a description of the routing table. For each level l, the routing table
contains the IP addresses of2b � 1 nodes that have the same nodeId prefix as the local
node up to levell � 1, but differ at levell. Each of these nodes is arepresentativeof a
different domain at levell.

1 Typically a value of 3 or 4 would be used forb.

www.manaraa.com

In principle, any node whose nodeId matches the local node’snodeId up to levell � 1 and whose domain at levell equalsd can serve as a representative for domaind. In practice, among all nodes with the correct nodeId prefix,the node that is closest
to the present node in the network is chosen as the representative. As will be shown in
Section 2.4, this ensures that message routing in Pastry exhibits good network locality.

The choice ofb involves a tradeoff between the size of the populated portion of
the routing table (approximatelydlog2bNe � (2b � 1), whereN is the total number of
existing Pastry nodes) and the maximum number of hops required to route between any
pair of nodes (dlog2bNe) 2. With a value ofb = 4 and with as many as1012 nodes, the
routing table contains only approximately 150 entries and in the worst-case a message
is routed through 10 nodes.

The neighborhood setM contains the nodeIds and IP addresses of thejM j nodes
that are closest (according the proximity metric) to the local node. The neighborhood set
is not normally used in routing messages; its purpose will become clear in Section 2.5.

The namespace setL contains the nodeIds and IP addresses of thejLj existing nodes
whose nodeIds are numerically closest and centered around the local node’s nodeId.
The namespace set is used during the message routing, as described below. The set
is also used during object insertion, wherek replicas of the inserted object are stored
on a subset of the namespace set. Typical values forjLj and jM j are2b and2 � 2b,
respectively.

How the various tables of a Pastry node are initialized and maintained is the subject
of Section 2.5. Figure 1 depicts the state of a hypothetical Pastry node with the nodeId
10233102 (base 4), in a system that uses 16 bit nodeIds and a value of b = 2.

2.3 Routing

The routing procedure is shown in pseudocode form below. It is executed whenever a
message with destIdD arrives at a node with nodeIdA. We begin by defining some
notation.Ril : the entry in the routing tableR for domaini, 0 � i < 2b at levell, 0 � l < b128=b.Mi: the entry in the neighborhood tableM , representing the i-th closest node,0 � i <jM j.Li: the i-th closest nodeId in the namespace tableL, �bjLj=2 � i � bjLj=2, where
negative/positive indices indicate nodeIds smaller/larger than the present nodeId, re-
spectively.Dl: the domain of destIdD at levell.shl(A;B): the length of the prefix shared amongA andB, in levels.

(1) if (L�bjLj=2 � D � LbjLj=2) f
(2) //D is within range of our namespace set
(3) forward toLi, s.th.jD � Lij is minimal;
(4) g elsef
(5) // use the routing table
(6) Let l = shl(D;A);

2 We assume throughout this paper that nodeIds are uniformly distributed.

www.manaraa.com

Neighborhood set

0 2212102 2 2301203

1 1 301233 1 2 230203

10 0 31203 10 1 32102 02212102

102 0 0230 102 1 1302 102 2 2302

1023 0 322 1023 1 000 1023 2 121

10233 0 01 02212102 10233 2 32

02212102 102331 2 0

 02212102

1

2

0

3 1203203

1 3 021022

10 3 23302

02212102

02212102

3

2

1

3

0

Routing table

13021022 10200230

02212102 22301203 31203203

11301233 31301233

33213321

Namespace set

10233021 10233033 10233120 10233122

Fig. 1.State of a hypothetical Pastry node with nodeId 10233102,b = 2. All numbers are in base
4. The top row of the routing table represents level zero.

(7) if (RDll 6= null) f
(8) forward toRDll ;
(9) g
(10) elsef
(11) // rare case
(12) forward toT 2 L [R [M , s.th.
(13) shl(T;D) � l,
(14) jT �Dj < jA�Dj
(15) g
(16) g

Given a message, the node first checks to see if the destId falls in the range of
nodeIds covered by its namespace set (line 1). If so, the message is forwarded directly
to the destination node, namely the node in the namespace setwhose nodeId is closest
to the destId (possibly the present node) (line 3).

If the destId is not covered by the namespace set, then the routing table is used and
the message is forwarded to a node that shares a common prefix with the destId by
at least one more level (lines 6–8). In certain cases, it is possible that the appropriate
entry in the routing table is empty or the associated node is not reachable (line 11–
14), in which case the message is forwarded to a node that shares a prefix with the

www.manaraa.com

destId at least as long as the local node, and is numerically closer to the destId than the
current nodeId. It follows from the properties of the routing table and namespace set
that such a node must always exist, unlessbjLj=2 nodes with adjacent nodeIds have
failed simultaneously.

This simple routing procedure always converges, because each step takes the mes-
sages to a node that either (1) shares a longer prefix with the destId than the local node,
or (2) shares as long a prefix with, but is numerically closer to the destId than the local
node.

Routing performanceIt can be shown that a message reaches its destination in no
more thandlog2bNe steps in the common case, whereN is the total number of existing
Pastry nodes. Briefly, consider the three cases in the routing procedure. If a message
is forwarded using the routing table (lines 6–8), then the set of nodes containing the
destination node is reduced by a factor of2b in each step, which means the destination
is reached indlog2bNe steps. If the destId is within range of the namespace set (lines
2–3), then the destination node is at most one hop away.

The third case arises when the destId is not covered by the namespace set (i.e., it is
still more than one hop away from the destination), but thereis no routing table entry.
In the absence of node failures, this means that a node in the corresponding domain
does not exist (lines 11–14). Due to the uniform distribution of nodeIds this case is
unlikely, providedjLj is sufficiently large. For instance, withjLj = 2b andjLj = 2�2b
it occurs in less than 2% and 0.4% of all cases, respectively.When it happens, at most
one additional routing step results in virtually all cases.

In the event of many simultaneous node failures, the number of routing steps re-
quired may be at worst linear inN , while the nodes are updating their state. In prac-
tice, routing performance degrades gracefully, as we will show experimentally in Sec-
tion 3.1. Ultimately, a node may become unreachable when at leastbjLj=2 nodes
with consecutive nodeIds fail simultaneously. However, due to the expected diversity
of nodes with adjacent nodeIds, and with a reasonable choicefor jLj (e.g.2b), the prob-
ability of this event is very low.

2.4 Network locality

In the previous section, we discussed Pastry’s convergenceand the expected number of
routing hops. This section focuses on another aspect of Pastry’s routing performance,
namely its properties with respect to network locality. We will show that (1) the route
chosen for a message is likely to be “good” in terms of networkproximity, and (2) if an
object is stored atk consecutive nodes, a query message for the object is likely to first
reach a node near the client, among thek nodes.

Pastry’s notion of network proximity is based on a scalar proximity metric, such
as the number of IP routing hops, the network delay, or a combination of these and
other factors. All that Pastry assumes is that the application provides a function that
allows each Pastry node to determine the “distance” of a nodewith a given IP address
to itself. A node with a lower distance value is assumed to be more desirable. An ap-
plication implements this function depending on its choiceof a proximity metric, using

www.manaraa.com

network services like traceroute, ping, or Internet subnetmaps and appropriate caching
and approximation techniques to minimize overhead.

Route locality Recall that the representative for each domain and level in the routing
table is chosen to be the node closest in the network to the present node, among all nodes
with the given nodeId prefix. As a result, in each routing step, a message is forwarded
to the closest node with a nodeId that shares a longer common prefix or is numerically
closer to the destId than the local node. That is, each step moves the message closer
to the destination in the namespace, while travelling the least possible distance in the
network.

Since only local information is used, Pastry minimizes the distance of the next rout-
ing step with no sense of direction. This procedure clearly does not guarantee that the
shortest path from source to destination is chosen; however, it does give rise to reason-
ably good routes. Two facts are relevant to this statement. First, given a message was
routed from nodeA to nodeB at distanced fromA, the message cannot subsequently
be routed to a node with a distance of less thand from A. This follows directly from
the routing procedure, assuming accurate routing tables.

Second, the expected distance traveled by a messages duringeach successive rout-
ing step is exponentially increasing. To see this, observe that a representative in the
routing table at levell is chosen from a set of nodes of sizeN=2bl. That is, the rep-
resentatives at successive levels are chosen from an exponentially decreasing number
of nodes. Given the random and uniform distribution of nodeIds in the network, this
means that the expected distance of the closest representative at each successive level
is exponentially increasing.

Jointly, these two facts imply that although it cannot be guaranteed that the distance
of a message from its source increases monotonically at eachstep, a message tends to
make larger and larger strides with no possibility of returning to a node withindi of
any nodei encountered on the route, wheredi is the distance of the routing step taken
away from nodei. Therefore, the message has nowhere to go but towards its destination.
Figure 2 illustrates this effect.

Locating the nearest replicaWe now turn to our second claim; namely, amongk nodes
with adjacent nodeIds that store an object, a client query will likely be routed first to
a node that is near the client. Observe that due to the random assignment of nodeIds,
nodes with adjacent nodeIds are likely to be widely dispersed in the network. Thus, it
is important to direct a lookup query towards a replica that is located relatively near the
client.

Recall that Pastry routes messages towards the node with thenodeId closest to the
destId, while attempting to travel the smallest possible distance in each step. Therefore,
among thek nodes storing an object, a query message tends to first reach anode near the
client. Of course, this process only approximates routing to the nearest replica. Firstly,
as discussed above, Pastry makes only local routing decisions, minimizing the distance
traveled on the next step with no notion of direction.

Secondly, since Pastry routes primarily based on nodeId prefixes, it sometimes
misses nearby replicas stored on nodes with a different prefix than the object. In the
worst case,k=2 � 1 of the replicas are stored on nodes whose nodeIds differ fromthe

www.manaraa.com

Level 1

Level 2

Level 3Level 0

Level 0

Fig. 2. Trajectory of a typical message in the Pastry network, basedon experimental data. The
message cannot re-enter the circles representing the distance of each of its routing steps away
from intermediate nodes. Although the message may partly “turn back” during its initial steps,
the exponentially increasing distances traveled in each step cause it to move toward its destination
quickly.

objId in their domain at level zero. As a result, Pastry will first route towards the nearest
among thek=2 + 1 remaining replicas. Despite this anomaly, results presented in Sec-
tion 3.3 show that this and similar cases occur infrequentlyenough that Pastry is able
to locate the nearest replica in approximately 60%, and one of the two nearest replicas
in approximately 80% of all queries.

Moreover, we are exploring heuristics to overcome the prefixmismatch issue de-
scribed above. One very simple heuristic we have studied is based on estimating the
density of nodeIds in the namespace using local information. Based on this estimation,
the heuristic detects when a message approaches the replicaset of an object, and then
switches to numerically nearest address based routing to located the nearest replica. Our
results show that this heuristic allows Pastry to locate thenearest object in over 75%,
and one of the two nearest replicas in over 91% of all queries,at the expense of a slight
increase in the average number of hops taken.

2.5 Self-configuration and adaptation

In this section, we discuss how Pastry deals with changes in node membership. In partic-
ular, we describe the protocols handling the arrival and departure of nodes in the Pastry
network. Throughout this discussion, we assume that the proximity space defined by
the chosen proximity metric is euclidian; that is, the triangulation inequality holds for
distances among Pastry nodes. If this assumption does not hold, routing correctness is
unaffected; however, the locality properties of Pastry routes may suffer.

Node arrival When a new node arrives, it needs to initialize its tables, and then inform
other nodes of its presence. We assume the new node knows initially about a nearby
(in the network) Pastry nodeA that is already part of the system. Such a node can be

www.manaraa.com

detected automatically, for instance, using “expanding ring” IP multicast, or obtained
by the system administrator through outside channels.

The new node draws a random nodeIdX and then asksA to route a special “join”
message with the destination id equal toX . Like any message, the join will be routed
to the existing nodeZ whose id is numerically closest toX .

In response to receiving the “join” request, nodesA, Z, and all nodes encountered
on the path fromA toZ send their state toX . The new nodeX inspects this information,
requests state from additional nodes, and then initializesits state, using a procedure
describe below. Finally,X informs any nodes that need to be aware of its arrival. We
will show that this procedure ensures thatX initializes its state with appropriate values,
and that the state of all other interested nodes are modified appropriately.

First, consider the neighborhood set. Since nodeA is assumed to be close to the
new nodeX , A’s neighborhood set is a close approximation ofX ’s neighborhood set,
and can therefore be used to initialize the latter. Second, sinceZ has the closest ex-
isting nodeId toX , its namespace set is the basis ofX ’s namespace set. Furthermore,Z providesX with information about object replicas stored within its namespace set,
allowing X to properly forward lookup messages for objIds within the range of the
namespace set.

Next, we consider the routing table, starting at level zero.We consider the most
general case, where the nodeIds ofA andX share no common prefix. Since all nodes
share the same level zero domains, the representatives at this level only depend on a
node’s location. LetAi denote nodeA’s row of the routing table at leveli. SinceA is
assumed to be close toX , A0 closely approximates the optimal values forX0. Other
levels ofA’s routing table are of no use toX , sinceA’s andX ’s ids share no common
prefix.

However, appropriate values forX1 can be taken fromB1, whereB is the first node
encountered along the route fromA to Z. To see this, observe thatB1 mentions the
same domains asX1 becauseX andB share the same prefix at level0. Intuitively, it
would appear that the choice of representatives inB1 is not appropriate, since these
nodes are close toB, but not necessarily toX .

To see why this is not so, recall that the representatives at each successive level
are chosen from an exponentially decreasing set size. Therefore, the expected distance
fromB of itsB1 representatives is much larger than the expected distance traveled from
nodeA toB. As a result,B1 is still a good approximation forX1. This same argument
applies for each successive level and routing step, as depicted in Figure 3.

After X has initialized its routing table in this fashion, it has enough information to
participate in the Pastry network. However, at this point its routing table and neighbor-
hood set only approximate the closest nodes (within each domain). The quality of this
data must be improved to avoid cascading errors that could eventually lead to poor route
locality. For this purpose, there is a second stage in whichX requests the state from each
of the nodes in its routing table and neighborhood set. It then compares the distance of
corresponding representatives found in those nodes’ routine tables and neighborhood
sets, respectively, and updates its own state with any closer nodes it finds.

Intuitively, a look at Figure 3 illuminates why incorporating the state of nodes men-
tioned in the routing and neighborhood tables from stage oneprovides good representa-

www.manaraa.com

Level 0

Level 1

Level 2
Z

X

A

Level 0

Fig. 3. Routing step distance versus distance of the representatives at each level (based on exper-
imental data). The circles around the n-th node along the route fromA toZ indicate the average
distance of the node’s representatives at leveln. Note thatX lies within each circle.

tives forX . The circles show the average distance of the representative from each node
along the route, corresponding to the levels in the routing table. Observe thatX lies
within each circle, albeit off-center. In the second stage,X obtains the state from the
representatives discovered in stage one, which are locatedat an average distance equal
to the perimeter of each respective circle. These states must include representatives that
are appropriate forX , but were not discovered byX in stage one, due to its off-center
location.

Finally,X transmits a copy of its resulting state to each of the nodes found in its
neighborhood set, namespace set, and routing table. Those nodes in turn update their
own state based on the information received. Experimental results in Section 3.2 show
that this procedure initializes a node’s state correctly and that it updates the state of rel-
evant nodes appropriately. The total cost of joining a node,in the number of RPCs ex-
changed, isO(log2bN). The constant is about3�2b (omitting the second stage reduces
the constant to2� 2b). For 100,000 nodes the largest message size is approximately 1
KByte.

Pastry uses an optimistic approach to controlling concurrent node arrivals and de-
partures. Since the arrival/departure of a node affects only a small number of exist-
ing nodes in the system, contention is rare and an optimisticapproach is appropriate.
Briefly, whenever a nodeA provides state information to a nodeB, it attaches a times-
tamp to the message.B adjusts its own state based on this information and eventually
sends an update message toA (e.g., notifyingA of its arrival).B attaches the original
timestamp, which allowsA to check if its state has since changed. In the event that its
state has changed, it responds with its updated state andB restarts its operation.

Node departureNodes in the Pastry network may fail or depart without warning. In
this section, we discuss how the Pastry network handles suchnode departures.

Node failures are detected when another node attempts to contact a node in its rout-
ing table or namespace set and there is no response. As explained in Section 2.3, such an
event does not normally delay the routing of a message, sincethe message can be for-
warded to another node. However, a replacement must be foundto preserve the integrity
of the routing table and namespace set.

www.manaraa.com

To replace a failed node in the namespace set, a node contactsthe live node with
the largest index on the side of the failed node, and asks thatnode for its namespace
table. For instance, ifLi failed for bjLj=2 < i < 0, it requests the namespace ta-
ble fromL�bjLj=2. Let the received namespace set beL0. This set partly overlaps the
present node’s namespace setL, and it contains nodes with nearby ids not presently inL. Among these new nodes, the appropriate one is then chosen toinsert intoL, verify-
ing that the node is actually alive by contacting it. This procedure guarantees that each
node lazily repairs its namespace set unlessbjLj=2 nodes with adjacent nodeIds fail.
Due to the diversity of nodes with adjacent nodeIds, such a failure is very unlikely even
for modest values ofjLj.

To repair a failed representativeRdl , a node contacts first another representativeRil ; i 6= d at the same level, and asks for its value forRdl . In the event that none of the
representatives at levell have a pointer to a live representative in domaind, the node
next contacts a representativeRil+1; i 6= d, thereby casting a wider net to include rep-
resentatives that are likely to be further away in the network. This procedure eventually
finds a representative if one exists.

The neighborhood set is not normally used in the routing of messages, yet it is
important to keep it current, since the set is needed when a joining node requests it.
For this purpose, a node attempts to contact each member of the neighborhood set
periodically (e.g. once an hour) to see if it is still alive3. If a member is not responding,
the node asks other members for their neighborhood tables, checks the distance of each
of the newly discovered nodes, and updates it own neighborhood set accordingly.

Experimental results in Section 3.2 demonstrate Pastry’s effectiveness in repairing
the node state in the presences of node failures, and quantify the cost of this repair in
terms of the number of messages exchanged.

3 Experimental results

In this section, we present experimental results obtained with a prototype implementa-
tion of Pastry. The Pastry node software was implemented in Java. To be able to per-
form experiments with large networks of Pastry nodes, we also implemented a network
simulation environment, where up to 100,000 Pastry nodes can run over a simulated
network.

All experiments were performed on a quad-processor Compaq AlphaServer ES40
(500MHz 21264 Alpha CPUs) with 2GBytes of main memory, running True64 UNIX,
version 4.0F. The Pastry node software was implemented in Java and executed using
Compaq’s Java 2 SDK, version 1.2.2-6 and the Compaq FastVM, version 1.2.2-4.

The Pastry nodes normally use Java remote object invocation(RMI) to commu-
nicate with each other. However, in all experiments reported in this paper, the Pastry
nodes were configured to run in a single Java VM. This is largely transparent to the
Pastry implementation—the Java runtime system automatically reduces communica-
tion among the Pastry nodes to local object invocations.

The simulated network environment maintains distance information between the
Pastry nodes. Each Pastry node is assigned a location in a plane; coordinates in the

3 An inactive node should do the same for its namespace set and routing table.

www.manaraa.com

plane are randomly assigned in the range[0; 1000℄. As Pastry is an overlay network,
we assume that the underlying networking infrastructure used by Pastry provides total
connectivity between all the nodes.

To drive the Pastry system, fictitious objects are inserted and retrieved. The objIds
are generated by computing SHA-1 secure hashcodes of URLs collected by a Web
crawler from several major University Web sites in the US. Inall experiments, 5 replicas
were stored for each inserted object (k = 5).

3.1 Routing performance

The first experiment shows the number of routing hops as a function of the size of the
Pastry network. We vary the number of Pastry nodes from 1,000to 100,000 in a network
whereb = 4, jLj = 16, jM j = 32. 100,000 objects are inserted and then each object
is retrieved from a different, randomly chosen starting node. Figure 4 show the results.
“Standard” is the normal Pastry routing procedure, “Estimation” is the routing proce-
dure augmented with the heuristic mentioned in Section 2.4.“Log N” shows the valuelog2bN and is included for comparison. (dlog2bNe is the expected maximum number
of hops required to route in a network containingN nodes). The results show that the
number of route hops scale with the size of the network as expected. Moreover, the cost
of the routing heuristic to improve the location of nearby replicas, in terms of the av-
erage number of route hops, is insignificant. Both “Standard” and “Estimation” require
less thanlog2bN hops due to the namespace set. Occasionally, a hop is saved because
the destination node lies in the namespace set, and therefore, is routed to directly, rather
than requiring an extra hop.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000 100000

Number of nodes

A
ve

rg
ag

e h
op

s pe
r lo

ok
up

Log N
Standard
Estimation

Fig. 4. Number of routing hops versus number of Pastry nodes,b = 4, jLj = 16, jM j = 32 and
100,000 objects.

www.manaraa.com

The second experiment compares the distance a message travels using Pastry with
that of a fictitious routing scheme that maintains complete routing tables. Here, distance
traveled is the sum of the distances between consecutive nodes encountered along the
route in the simulated network. For the fictitous routing scheme, the distance traveled
is simply the distance between the source and the destination node. The goal of this
experiment is to quantify the cost, in terms of distance traveled, of maintaining only
small routing tables in Pastry.

The number of nodes varies between 1,000 and 100,000, and again b = 4, jLj = 16,jM j = 32 and 100,000 objects are inserted and retrieved. Figure 5 shows the total (cu-
mulative) distance traveled using Pastry during the 100,000 retrieval operations (labeled
“Pastry”), compared to the distance traveled if every node had a complete routing ta-
ble (labeled “Complete routing tables”). With the completerouting table, it is assumed
that each node has an entry for every other node in the system.The distance with the
complete routing table is the distance between the source node and the node storing the
same replica that is reached when using Pastry (not necessarily the closest replica).

The results show that the Pastry routes are only approximately 40% longer than
those achieved with complete routing tables. Considering that the routing tables in Pas-
try contain only approximatelydlog2bNe�(2b�1) entries, this result is quite good. For
100,000 nodes the Pastry routing tables contain approximately 75 entries, compared to
99,999 in the case of complete routing tables.

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

4.00E+07

4.50E+07

5.00E+07

1000 10000 100000

Number of nodes

D
is

ta
nc

e

Pastry
Complete routing table

Fig. 5. Route distance versus number of Pastry nodes,b = 4, jLj = 16, jM j = 32, and 100,000
objects.

We also determined the routing throughput, in messages per second, of a Pastry
node. Our unoptimized Java implementation handled over 3,000 messages per second.
This confirms that the routing procedure is very lightweight.

www.manaraa.com

3.2 Maintaining the network

Figure 6 shows the quality of the routing tables, and how the extent of information
exchange during a node join operation affects the quality ofthe resulting routing tables.
In this experiment, 5,000 nodes join the Pastry network one by one. After all nodes
joined, the routing tables were examined. The parameters are b = 4; jLj = 16; jM j =32.

Three options were used to gather information when a node joins. “SL” is a hypo-
thetical method where the joining node considers only the appropriate row from each
node along the route from itself to the node with the closest existing nodeId (see Sec-
tion 2.5). With “WT”, the joining node fetches the entire state of each node along the
path, but does not fetch state from the resulting representatives. This is equivalent to
omitting the second stage. “WTF” is the actual method used inPastry, where state is
fetched from each node that appears in the tables after the first stage.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SL WT WTF SL WT WTF SL WT WTF SL WT WTF

Level 0 Level 1 Level 2 Level 3

N
um

be
r of

 en
tr

ie
s in

 ro
ut

in
g ta

bl
e

Empty
Sub-Optimal
Optimal

Fig. 6.Quality of routing tables,b = 4, jLj = 16, jM j = 32 and 5,000 nodes.

The results are shown in Figure 6. For levels 0 to 3, we show thequality of the
routing table entries with each method. With 5,000 nodes andb = 4, levels 2 and 3 are
not fully populated, which explains the missing entries shown. “Optimal” means that the
best (closest in the network) representative appeared in the routing table, “sub-optimal”
means that the representative was not the closest or was missing.

The results show that Pastry’s method of node integration (“WTF”) is highly effec-
tive in initializing the routing tables. On average, less than 1 entry per level of the rout-
ing able is not the best choice. Moreover, the comparison with “SL” and “WT” shows
that less information exchange during the node join operation comes at a dramatic cost
in routing table quality.

www.manaraa.com

Node failuresThe next experiment explores Pastry’s behaviour in the presence of node
failures. In our experiment, 100,000 objects are inserted into a 5,000 node Pastry net-
work with b = 4, jLj = 16, jM j = 32. Then, 10% (500) randomly selected nodes failed
silently. After the failure, 2 lookups were performed for each of the objects (200,000
lookups total) from randomly selected nodes, while the nodestate repair facilities in
Pastry were disabled. This allows us to measure the full impact of the failures on Pas-
try’s routing performance. Next, the node state repair facilities were enabled, and an-
other 200,000 lookups were performed from the same locations.

Figure 7 shows the average routing table quality across all nodes for levels 0–2, as
measured before the failures, after the failures, and afterthe repair. Note that in this
figure, missing entries are shown separately from sub-optimal entries. Also, recall that
Pastry lazily repairs namespace set and routing tables entries when they are being used.
As such, routing table entries that were not used during the 200,000 lookups are not
discovered and therefore not repaired. To isolate the effectiveness of Pastry’s repair
procedure, we excluded table entries that were never used.

8

9

10

11

12

13

14

15

No fail No repair Repair No fail No repair Repair No fail No repair Repair

Level 0 Level 1 Level 2

N
um

be
r of

 en
tr

ie
s in

 ro
ut

in
g ta

bl
e

Empty
Missing
Sub-Optimal
Optimal

Fig. 7. Quality of routing tables before and after 500 node failures, b = 4, jLj = 16, jM j = 32
and 5,000 starting nodes.

The results show that Pastry recovers all missing table entries, and that the quality
of the entries (fraction of optimal entries) approaches that before the failures. At level
zero, the average number of best entries after the repair is approximately one below that
prior to the failure. However, although this can’t be seen inthe figure, our results show
that the actual distance between the suboptimal and the optimal representatives is very
small. This is intuitive, since the average distance of level zero representatives is very
small. Nevertheless, we are currently investigating a slight improvement to our repair
procedure that we expect to improve this result.

www.manaraa.com

Note that the increase in empty entries at levels 1 and 2 afterthe failures is due to
the reduction in the total number of Pastry nodes, which increases the sparseness of
the tables at the higher levels. Thus, this increase does notconstitute a reduction in the
quality of the tables.

Figure 8 shows the impact of failures and repairs on the routequality. The left bar
shows the average number of hops before the failures; the middle bar shows the average
number of hops after the failures, and before the tables wererepaired. Finally, the right
bar shows the average number of hops after the repair.

The data shows that without repairs, the stale routing tablestate causes as significant
deterioration of route quality. After the repair, however,the average number of hops is
only slightly higher than before the failures.

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

No Failure Failure with no routing table
repair

Failure with routing table repair

A
ve

ra
ge

 ho
ps

 pe
r lo

ok
up

Fig. 8.Number of routing hops versus node failures,b = 4, jLj = 16, jM j = 32, 100,000 objects
and 5,000 nodes with 500 failing.

We also measured the average cost, in messages, for repairing the tables after node
failure. In our experiments, a total of 57 RPCs were needed onaverage per failed node
to repair all relevant table entries.

3.3 Replica routing

The next experiment explores Pastry’s ability to locate replicas near the client. In a Pas-
try network of 10,000 nodes withb = 3 andjLj = 8, 100,000 object are being inserted
with 5 replicas each, and then looked up at randomly chosen nodes. Figure 9 shows
the percentage of lookups that reached the closest replica (0 better replicas), the second
closest replica (1 better replica), and so on. Results are shown for the three different pro-
tocols for initializing a new node’s state, for the normal routing protocol as well as the
heuristic mentioned in Section 2.4 and for an optimal version of the heuristic “Perfect

www.manaraa.com

estimation”. The heuristic approach estimates the namespace coverage of other nodes
namespace sets, using an estimate based on its own namespacesets coverage. Perfect
estimation ensures that this estimate of a nodes namespace set coverage is correct for
every node.

With the standard routing procedure and normal node joiningprotocol, Pastry is
able to locate the closest replica 68% of the time, and one of the top two replicas 87%
of the time. With the heuristic routing option, this figure increases to 76% and 92%,
respectively. The lesser routing table quality resulting from the “SL” and “WT” meth-
ods for node joining have a strong negative effect on Pastry’s ability to locate nearby
replicas, as one would expect. Also, the results show that the heuristic approach is only
approximately 2% worse than best possible results using perfect estimation.

The results show that Pastry is effective in locating a replica near the client in the
vast majority of cases, and that the use of the heuristic improves the performance of
Pastry. Furthermore, the heuristic performance is comparable to using perfect estima-
tion.

0

10

20

30

40

50

60

70

80

90

100

S
T

A
N

D
A

R
D

E
S

T
IM

A
T

IO
N

P
E

R
F

E
C

T
E

S
T

IM
A

T
IO

N

S
T

A
N

D
A

R
D

E
S

T
IM

A
T

IO
N

P
E

R
F

E
C

T
E

S
T

IM
A

T
IO

N

S
T

A
N

D
A

R
D

E
S

T
IM

A
T

IO
N

P
E

R
F

E
C

T
E

S
T

IM
A

T
IO

N

SL WT WTF

P
er

ce
nt

ag
e o

f lo
ok

up
s 4

3
2
1
0

Fig. 9. Number of closer replicas to the client than the replica discovered. (b = 3, jLj = 8,jM j = 16, 10,000 nodes and 100,000 objects).

4 Related Work

There are currently many peer-to-peer systems under development that require highly
scalable content location and request routing. Some of these systems are intended as file
sharing facilities, such as Gnutella [3], Freenet [2], and Napster [1]. Whilst these sys-
tems have proved popular, their location and routing algorithms suffer from limitations.
Napster uses a centralized document location discovery service, which limits its scala-
bility. In Gnutella, the use of a broadcast based protocol limits the system’s scalability

www.manaraa.com

and incurs a high bandwidth requirement. Furthermore, the routing algorithm does not
guarantee to find an existing object. The same is also true forFreenet. These systems
were designed for the large-scale sharing of mp3 files, and work under the assumption
that there will be many replicas of a popular song, and therefore, the probability of
finding it is high. This approach is not suitable for general peer-to-peer systems.

Pastry’s routing scheme bears some similarity to the work byPlaxton et al. [6, 7].
The general approach of routing using prefix matching on the objId is used in both
systems, which can be seen as a generalization of hypercube routing. However, there
are important differences. In Plaxton et al.’s approach, there is a single node that holds
information for a particular object, which makes the systemsusceptible to failure. In
Pastry, on the other hand, replication is used for fault tolerance. Plaxton et al. also
assume a static configuration, while Pastry assumes a dynamic system where nodes
are free to join and leave at any time. Furthermore, in order to achieve good locality,
Plaxton et al. assume knowledge of the location of all nodes in the system; Pastry merely
assumes that a node can measure the distance from itself to another node.

There are a number of research projects focusing on peer-to-peer storage utilities,
such as FarSite [4] and Oceanstore [5]. Farsite uses a distributed directory service to
locate content. Unlike in Pastry, this location function isnot integrated with the routing
infrastructure.

Oceanstore uses a two phase approach to content location androuting. The first
stage is probabilistic, using a generalization of Bloom filters. If that stage fails to find
an object, then a location and routing scheme called Tapestry is used [8]. Tapestry is
based on Plaxton et al. but extends that earlier work in several dimensions. Like Pastry,
Tapestry replicates objects for fault resilience and availability and supports dynamic
node addition and recovery from node failures. However, Pastry and Tapestry differ in
the approach they take for replicating files and in the way they achieve locality.

There has been significant prior work on overlay networks. Anoverlay network
consists of a collection of nodes placed strategically within an existing network infras-
tructure, and these nodes provide a network abstraction. Assuch, Pastry can be seen as
an overlay network that provides an object discovery service. Another example of an
overlay network is the Overcast system [9], which is one of several overlay networks
aimed at providing reliable multicasting or content distribution. Overcast provides a
single-source multicast stream distribution service.

There has been considerable work on routing in general, and of particular interest is
the work on hypercube and mesh routing in parallel computers. Also, more recently the
work on routing in ad hoc networks, for example GRID [10] and the routing algorithms
used in PEN [11]. However, the challenges in developing routing algorithms for ad
hoc networks differ, in as much as the main problem is device mobility. In Pastry, we
assume that there is already a network infrastructure that is capable of routing messages
between two nodes of the Pastry network, and the emphasis in on self-configuration and
the integration of content location and routing.

In the interest of scalability, Pastry nodes only use local information, while tradi-
tional routing algorithms (like link-state and distance vector methods) globally prop-
agate information about routes to each destination. This global information exchange

www.manaraa.com

limits the scalability of these routing algorithms, necessitating a hierarchical routing
architecture like the one used in the Internet.

Several prior works consider issues in replicating Web content in the Internet, and
selecting the nearest replica relative to a client HTTP query [12–14]. Pastry provides a
more general infrastructure aimed at a variety of peer-to-peer applications.

Another related area is that of naming services, which are largely orthogonal to
Pastry’s content location and routing. Lampson’s Global Naming System (GNS) [15]
is an example of a scalable naming system that relies on a hierarchy of name servers
that directly corresponds to the structure of the name space. Cheriton and Mann [16]
describe another scalable naming service. Like GNS, their service is a pure naming
service and relies on a hierarchy of name resolvers that reflects the structure of the
name space.

Finally, attribute based and intentional naming systems [17, 18], as well as direc-
tory services [19, 20] resolve a set of attributes that describe the properties of an object
to the address of an object instance that satisfies the given properties. Thus, these sys-
tems support far more powerful queries than Pastry. However, this power comes at the
expense of scalability, performance and administrative overhead. Pastry supports the
routing to a particular object identifier, rather than basedon the properties of the object.
Such systems could be potentially built upon Pastry.

5 Conclusion

We presented and evaluated Pastry, a generic, decentralized peer-to-peer content lo-
cation and routing system for very large, self-configuring overlay networks of nodes
connected via the Internet. Pastry is completely decentralized, fault-resilient, scalable,
and reliably locates a copy of the requested content if one exists. Moreover, Pastry usu-
ally locates a copy of the requested content that is near the client. Pastry can be be used
as a building block in the construction of a variety of peer-to-peer Internet applications
like global file sharing, file storage, and naming systems.

Pastry takes into account network locality when routing messages. In each routing
step, Pastry chooses the nearest node that is closer in the namespace to the destination.
Experimental results show that Pastry exhibits good network locality and that Pastry is
usually able to locate the nearest copy of a replicated object. Additional experimental
results with as many as 100,000 nodes show that Pastry scaleswell, that it is fully self-
configuring and that it can gracefully adapt to node failures.

References

1. Napster. http://www.napster.com/.
2. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A distributed

anonymous information storage and retrieval system. InWorkshop on Design Issues in
Anonymity and Unobservability, pages 311–320, July 2000. ICSI, Berkeley, CA, USA.

3. The Gnutella protocol specification, 2000. http://dss.clip2.com/GnutellaProtocol04.pdf.
4. W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless distributed

file system deployed on an existing set of desktop pcs. InProc. SIGMETRICS’2000, pages
34–43, 2000.

www.manaraa.com

5. John Kubiatowicz et al. Oceanstore: An architecture for global-scale persistent store. In
Proc. ASPLOS’2000, November 2000.

6. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated ob-
jects in a distributed environment. InProc. 9th ACM Symp. on Parallel Algorithms and
Architectures, pages 311–320, June 1997. Newport, Rhode Island, USA.

7. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objects
in a distributed environment.Theory of Computing Systems, 32:241–280, 1999.

8. Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastructure for
fault-resilient wide-area location and routing, 2001. Submitted for publication.

9. John Jannotti, David K. Gifford, Kirk L. Johnson, M. FransKaashoek, and James W.
O’Toole. Overcast: Reliable multicasting with an overlay network. InProc. of OSDI 2000,
October 2000.

10. Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert Morris. A
scalable location service for geographical ad hoc routing.In Proc. of ACM MOBICOM 2000,
August 2000.

11. Frazer Bennett, David Clarke, Joseph B. Evans, Andy Hopper, Alan Jones, and David Leask.
Piconet - embedded mobile networking.IEEE Personal Communications, 4(5):8–15, Octo-
ber 1997.

12. Yair Amir, Alec Peterson, and David Shaw. Seamlessly selecting the best copy from Internet-
wide replicated web servers. InProceedings of the 12th International Symposium on Dis-
tributed Computing, Andros, Greece, September 1998.

13. Jussi Kangasharju, James W. Roberts, and Keith W. Ross. Performance evaluation of redi-
rection schemes in content distribution networks. InProceedings of the 4th Web Caching
Workshop, San Diego, CA, March 1999.

14. Jussi Kangasharju and Keith W. Ross. A replicated architecture for the domain name system.
In Proceedings of the IEEE Infocom 2000, Tel Aviv, Israel, March 2000.

15. Butler Lampson. Designing a global name service. InProceedings of Fifth Symposium on
the Principles of Distributed Computing, pages 1–10, August 1986.

16. David R. Cheriton and Timothy P. Mann. Decentralizing a global naming service for im-
proved performance and fault tolerance.ACM Transactions on Computer Systems, 7(2):147–
183, May 1989.

17. Mic Bowman, Larry L. Peterson, and Andrey Yeatts. Univers: An attribute-based name
server.Software—Practice and Experience, 20(4):403–424, April 1990.

18. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design
and implementation of an intentional naming system. InProceedings of the Seventeenth
ACM Symposium on Operating System Principles, Kiawah Island, SC, December 1999.

19. J. Reynolds. RFC 1309: Technical overview of directory services using the x.500 protocol,
March 1992.

20. Mark A. Sheldon, Andrzej Duda, Ron Weiss, and David K. Gifford. Discover: A resource
discovery system based on content routing. InProceedings of the 3rd International World
Wide Web Conference, 1995.

